110 research outputs found

    Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting

    Get PDF
    A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm(2) photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm(2)) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in amounts close to the expected values from the photocurrent. The hematitle has a unique single-crystalline "wormlike" morphology produced by in-situ two-step annealing at 550 degrees C and 800 degrees C of beta-FeOOH nanorods grown directly on a transparent conducting oxide glass via an all-solution method. In addition, it is modified by platinum doping to improve the charge transfer characteristics of hematite and an oxygen-evolving co-catalyst on the surface.open2

    Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease

    Get PDF
    Modern human environments are vastly different from those of our forebears. Rapidly advancing technology in transportation, communications, workplaces, and home entertainment confer a wealth of benefits, but increasingly come with costs to human health. Sedentary behavior—too much sitting as distinct from too little physical activity—contributes adversely to cardiometabolic health outcomes and premature mortality. Findings from observational epidemiology have been synthesized in meta-analyses, and evidence is now shifting into the realm of experimental trials with the aim of identifying novel mechanisms and potential causal relationships. We discuss recent observational and experimental evidence that makes a compelling case for reducing and breaking up prolonged sitting time in both the primary prevention and disease management contexts. We also highlight future research needs, the opportunities for developing targeted interventions, and the potential of population-wide initiatives designed to address too much sitting as a health risk

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential

    MicroRNA networks direct neuronal development and plasticity

    Get PDF
    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation

    Global Diversity of Ascidiacea

    Get PDF
    The class Ascidiacea presents fundamental opportunities for research in the fields of development, evolution, ecology, natural products and more. This review provides a comprehensive overview of the current knowledge regarding the global biodiversity of the class Ascidiacea, focusing in their taxonomy, main regions of biodiversity, and distribution patterns. Based on analysis of the literature and the species registered in the online World Register of Marine Species, we assembled a list of 2815 described species. The highest number of species and families is found in the order Aplousobranchia. Didemnidae and Styelidae families have the highest number of species with more than 500 within each group. Sixty percent of described species are colonial. Species richness is highest in tropical regions, where colonial species predominate. In higher latitudes solitary species gradually contribute more to the total species richness. We emphasize the strong association between species richness and sampling efforts, and discuss the risks of invasive species. Our inventory is certainly incomplete as the ascidian fauna in many areas around the world is relatively poorly known, and many new species continue to be discovered and described each year

    Status and Prospects of ZnO-Based Resistive Switching Memory Devices

    Get PDF

    Hard X-ray beamline of 7.5T superconducting wiggler at Pohang Light Source

    No full text
    A superconducting wiggler of 7.5 T magnetic field will be installed for researches using hard X-ray photons up to 100 keV at Pohang Light Source. It consists of three poles: a central main pole and two side poles on either side. Three beamlines will be constructed in a total radiation fan of 17 mrad: the spectroscopy beamline with 2 mrad, the scattering/medical application beamline with 5 mrad in common. The spectroscopy beamline is now under construction and the other beamlines will be constructed in the next stage. (C) 2001 Elsevier Science B.V. All rights reserved.X11sciescopu
    corecore